
Week 6: 

Current, Resistance, RC Circuit
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Energy of a capacitor (copper wire)

The purpose of this experiment is to illustrate the internal resistance of an object (here a copper 
wire) by vaporizing it by Joule effect using a capacitor. The capacitor will pass a lot of electrical 
energy through the copper wire in a very short time, which will have the effect of increasing its 
temperature very quickly to the point of vaporizing this cable almost instantaneously.

https://auditoires-physique.epfl.ch/experiment/422/energie-dun-

condensateur-fil-de-cuivre

DEMO
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Electric Current

Note 1: 1 A = 1 C/s
Electron charge: 𝑒 ≅ 1.6 × 10−19 C 
⇒ a current of 1 A consists of 6 × 1018 électrons/s through 
the surface 𝐴

Electric field in conductors and resistivity:

• E inside of conductors is 0 only in static case (no current) 

• Electrons in a conductor move like molecules in a gas 

• Upon applying potential difference electrons in addition drift toward + 

• Their motion is hindered by scattering on atoms (also on impurities) – this causes electric resistivity. 

• The higher is T, the high is chaotic thermal motion – larger resistance.

Let’s consider the total charge crossing a 

conductor cross-section each unit of time

Electric current: Charge flux per unit time through a surface A

𝐼 ≜
𝑑𝑄

𝑑𝑡
=

Δ𝑄

Δ𝑡
 =

𝜌𝐴Δ𝑥

Δ𝑡
 =  (𝑛𝑞𝑣𝑑)𝐴 = 𝐽𝐴
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Electric Current density 𝑱

• current density J is current per area or, 

equivalently, 

   charge per area and time

   unit of J:  A/m2

directions are important …

• total current passing through A is

𝑰 = න

𝒔𝒖𝒓𝒇𝒂𝒄𝒆

Ԧ𝑱 ⋅ 𝒅𝑨

• current density is a vector

   (direction is direction of velocity of positive charge carriers)

• current density    flowing through infinitesimal 

area        produces infinitesimal current
𝒅𝑰 = Ԧ𝑱 ⋅ 𝒅𝑨

Ԧ𝐽

𝑑 Ԧ𝐴

dA

J

cross section A of wire

J

𝐼 = න

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

Ԧ𝐽 ⋅ 𝑑 Ԧ𝐴 = 𝐽 න

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝐴 = 𝐽𝐴 ⇒  𝐽 =
𝐼

𝐴

• if Ԧ𝑱 is uniform and parallel to 𝒅𝑨 :
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Electric Current

Electric current: Charge flux per unit time through a surface A

𝐼 ≜
𝑑𝑄

𝑑𝑡
=

Δ𝑄

Δ𝑡
 =

𝜌𝐴Δ𝑥

Δ𝑡
 =  (𝑛𝑞𝑣𝑑)𝐴 = 𝐽𝐴

Note 1: 1 A = 1 C/s
Electron charge: 𝑒 ≅ 1.6 × 10−19 C 
⇒ a current of 1 A consists of 6 × 1018 électrons/s through 
the surface 𝐴

Charge density:  𝜌 =  𝑛𝑞 [C/m3]
Density of charged particles: 𝑛 [1/m3]
Current density: 𝐉 =  𝑛𝑞𝐯𝑑 = 𝜌𝐯𝑑 [A/m2]
Current: 𝐼 = 𝐽𝐴 [A]
Charge ′′drift′′ Speed: 𝐯𝑑 [m/s]

Let’s consider the total charge crossing a 

conductor cross-section each unit of time

typical currents:

• 100 W light bulb:  roughly 1A

• car starter motor: roughly 200A

• TV, computer, phone: nA to mA  

current is a scalar (not a vector) 

• has a sign associated with it

• conventional current is flow 

of positive charge

Electric field in conductors and resistivity:

• E inside of conductors is 0 only in static case (no current) 

• Electrons in a conductor move like molecules in a gas 

• Upon applying potential difference electrons in addition drift toward + 

• Their motion is hindered by scattering on atoms (also on impurities) – this causes electric resistivity. 

• The higher is T, the high is chaotic thermal motion – larger resistance.
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Metals are conductors because they have “free” electrons, 
which are not bound to metal atoms.

In a cubic meter of a typical conductor there roughly 1028 free 
electrons, moving with typical speeds of 1,000,000 m/s…

…but the electrons move in random directions, and there is no 
net flow of charge, until you apply an electric field.

Currents in Materials
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Ohm’s Law, a microscopic model

Drude Model:

𝐅 =  𝑞𝐄 ⇒  𝐚 =
𝑞

𝑚𝑒
𝐄 ⇒

For a single charge between two collisions:

𝐯(𝑡) = 𝐯(0)  +
𝑞

𝑚𝑒
𝐄𝑡

For a large number of charges:
⟨𝐯(0)⟩ = 0 ⇒

⟨𝐯⟩ ≜ 𝐯𝑑  = ⟨𝐯(0)⟩ +
𝑞𝐄

𝑚𝑒
⟨ 𝑡⟩ ≅

𝑞

𝑚𝑒
𝐸𝜏

𝜏: average time between two collisions
𝐯𝑑:  "drift" velocity (effective average speed in the direction of 
the field 𝐄)

Due to collisions with fixed ions, the speed of free electrons 

in a solid reaches a limiting value vd ( «drift» velocity) 

proportional to the electric field. 

(≈ viscous friction) 

0 0d=  =E v 0 0d  E v

𝐯𝑑 =
𝑞

𝑚𝑒
𝐄𝜏

⇒

𝐉 ≡ 𝑛𝑞𝐯𝑑  =
𝑛𝑞2𝐄

𝑚𝑒
𝜏 =  𝜎𝐄 

⇒  
𝐉 =  𝜎𝐄 Ohm′s law "local"
Electrical conductivity [1/Ωm=S/m]: 

𝜎 ≡
𝑛𝑞2

𝑚𝑒
𝜏

Electrical Resistivity [Ωm]: 𝜌 ≡
𝑚𝑒

𝑛𝑞2𝜏
 



For many materials (including most metals), the ratio of the 

current density to the electric field is a constant s that is 

independent of the electric field producing the current.
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𝐉 =
𝐼

𝐴
= 𝝈𝐸 =  𝜎

Δ𝑉

𝑙
 Ohm′s law "local"

 ⇒

Δ𝑉 =
𝑙

𝜎
 𝐉 =  (

𝑙

𝜎𝐴
)𝐼 =  𝑹𝐼 

⇒
Δ𝑉 = 𝑅𝐼 Ohm′s law"global" 

𝑅 ≜ (
𝑙

𝜎𝐴
) = 𝝆

𝑙

𝐴

𝐄 = −∇𝑉 stationary condition
⇒
𝐄 𝐱 = 𝐸 ො𝐱 = cost
⇒

න

0

𝑙

𝐄 ⋅ 𝑑𝐥 = Δ𝑉 න

0

𝑙

𝐄 ⋅ 𝑑𝐥 = 𝐸 𝑙

⇒

𝐸 =
Δ𝑉

𝑙
E is not zero in the conductor.

(stationary current but not static charges…

therefore the condition is not "electrostatic")

Δ𝑉= 𝑉𝑎 − 𝑉𝑏

(generated, 

for instance, 

by a battery)

Δ𝑉

𝜌 is called

resistivity

𝑅 is called

resistance

Electric Current and Resistance

If the ends of the conducting wire are connected to a battery, all 

points on the loop are not at the same potential. The battery sets 

up a potential difference between the ends of the loop, creating 

an electric field within the wire. The electric field exerts forces 

on the electrons in the wire, causing them to move in the wire and 

therefore creating a current

In some materials, the current density 

is proportional to the electric field

conductivity

resistivity
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resistance of the wire,

unit              (Ohm)

current in a wire:

𝑅 =
𝜌𝐿

𝐴

L


A• length L, cross section A

• material of resistivity 

start from

𝑉 = 𝐸𝐿 = 𝜌𝐽𝐿 = 𝜌
𝐼

𝐴
𝐿 = 𝐼𝑅

𝐸 = 𝜌𝐽

𝑉 = 𝐼𝑅

𝑉

𝐴
= Ω

Ohm’ law (device version)

• the longer a wire, the harder it is to push 

electrons through it

• the greater the resistivity, the “harder” it is 

for the electrons to move in the material

• the greater the cross-sectional area, the 

“easier” it is to push electrons through it

• resistance of wire (or other device) measures 

how easily charge flows through it

Distinguish:

 Resistivity = material’s property

 Resistance = device property 

Resistance of a wire: Summary
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Notes:

1. Problem of the notation
Beware of confusion between: 𝜌 (resistivity) and 𝜌 (charge density in a volume), 
 𝜎 (conductivity)  and 𝜎 (𝑠urface charge density) 

2. Speed of thermal agitation and mean time between two collisions: 
⟨𝐯(0)⟩ = 0 but ⟨𝑣(0)⟩ ≠ 0 (thermal agitation of electrons)

 ⟨𝑣(0)⟩ ≅ 𝒗𝒕𝒉 =
3𝑘𝑇

𝑚𝑒
≅ 𝟏𝟎𝟓 m/s (!!) for 𝑇 ≅ 300 K

The Mean Free Path 𝜆 is a little larger than the distance between the atoms 𝑑𝑎𝑡𝑜𝑚𝑠 . 

So, the time between collisions is: 𝜏 ∼
𝜆

𝑣𝑡ℎ
∼

10𝑑𝑎𝑡𝑜𝑚𝑠

𝑣𝑡ℎ
∼

10−9 m

105 m/s
∼ 10−14 s

3.  Drift velocity:
For a copper wire(𝑛 ≅ 8.5 × 1028 électrons/m3) 
with section 𝐴=1 mm2 with a current 𝐼=10 A ⇒

𝐽 = 𝑒𝑛𝑣𝑑 =
𝐼

𝐴
= 107 A/m2 ⇒ 𝒗𝒅 =

𝐽

𝑒𝑛
≅ 𝟏 mm/s (!!) ⇒  𝒗𝒅 << 𝒗𝒕𝒉 (!!)

4. Field 𝐄 = 0 or 𝐄 ≠ 0 in a conductor? 
𝐄 = 0 for a conductor in electrostatic conditions (static charges, so for 𝐉=0). 

For a Perfect Conductor with 𝜎 = ∞ , 𝐄 =
𝐉

𝜎
= 0 also for 𝐉 ≠ 0.

For a real conductor 𝐄 = 0 in electrostatic conditions ("static charges") but 𝐄 ≠ 0 for 𝐉 ≠ 0. 
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5. Phenomenologically, the current density in many systems obeys Ohm′s law.
But Ohm′s law is not a "mathematical" consequence of Maxwell′s equations.
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métal

superconductor

Hg

Temperature dependence of resistance(for a 

superconductor-metal)

“Low” temperature (approx. <20 K):Resistance 

is due to collisions with impurities

“High” temperature (approx. >20 K):

Resistance is due to collisions

with the ions.

Temperature dependence of resistivity (for a metal)

6. Resistance and Resistivity for Metals and Other Materials. 
 

One truly remarkable feature of superconductors is that once a current is 

set up in them, it persists without any applied potential difference 

(because R = 0). Steady currents have been observed to persist in 

superconducting loops for several years with no apparent decay!
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Ideal Direct Current (DC) Circuits

Idealization (convention):

• Connecting wires have no resistance 

(or inductance or capacity).

• All resistance is in special elements 

labeled R.

• All capacity is in elements labeled C.

Properties of battery ?

I =
V

R
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• ideal battery (or other voltage source):

    voltage does not depend on the current flowing

• real battery: voltage does depend on current,

    typically voltage decreases with increasing current (load)    

How to model a real battery?

• real battery consists of ideal battery + internal resistance

+ -
a b

  r      

internal resistance r

Voltage of ideal battery is called 
electromotive force (emf) 

Ideal versus real voltage sources
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The electromotive force (emf) of a voltage source is the 
potential difference it produces when no current is flowing.

Can the emf be measured?

•hook up a voltmeter:

+ -
a b

The “battery” is everything 
inside the green box.

I

 (emf)

emf is not a force!

emf is not a force!
 

• as soon as you connect the 
voltmeter, current flows

• you can only measure terminal 
voltage Vab, but not emf 

An ideal voltmeter would be able to 
measure . 

EMF and terminal voltage

10-01-08.ppt
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EMF and Terminal Voltage

Electric circuit needs battery or voltage generator to produce current – 

these are called, in general, sources of electromotive force (emf, 𝓔).

Real battery does have a small internal resistance r, such that:

This resistance behaves as though it were in 

series with the emf.

• The actual voltage Vad applied to an  external

     resistor R drops upon increase of the current

Imax < r (R >>r)

We will generally use a battery as a source of energy for circuits in our discussion.

battery

𝑉𝑎𝑑 = ℰ − 𝐼𝑟

𝑉𝑎𝑑

d
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Electric Power

Consider an electric circuit with an ideal battery and a resistor :

• The battery keeps V= constant 

• Current is from + to –

V

R

The work spent by battery to transfer a

 charge Q through the resistor:

W =V·Q

• This energy is released in the resistor as heat (Joule effect)

The rate at which the electric potential energy of the system 

decreases as the charge Q passes through the resistor:

P =
dW

dt
=

d

dt
(DV·Q) = DV·

dQ

dt
= DV·I

[P] = Watt = VA

Unless noted otherwise, we shall 

assume the resistance of the wires is 

small compared with the resistance of 

the circuit element so that the energy 

delivered to the wires is negligible

POWER 

DISSIPATED 

through R

𝑃 = 𝑉𝐼 = 𝑉2/𝑅 = 𝐼2𝑅
(𝐼 = 𝑉/𝑅) 
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Simple exemples for Electric Power

Example I Example II
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Resistors in Series and in Parallel

The equivalent resistance has the same effect 

on the circuit as the series/parallel combination 

of resistors; that is, the equivalent resistance 

draws the same current I from the battery.



6.20

Series: single circuit; the same current.

Parallel: the current is split; the voltage 

across each resistor is the same.

What is the equivalent resistance?

  
V =V

1
+V

2
+V

3
= IR

1
+ IR

2
+ IR

3

  
V = IR

series
= IR

1
+ IR

2
+ IR

3
® R

series
= R

1
+ R

2
+ R

3

  
V = IR

series
= IR

1
+ IR

2
+ IR

3
® R

series
= R

1
+ R

2
+ R

3

  

V

R
parallel

=
V

R
1

+
V

R
2

+
V

R
3

®
1

R
parallel

=
1

R
1

+
1

R
2

+
1

R
3

R
parallel

=
1

1 R
1
+1 R

2
+1 R

3

  

V

R
parallel

=
V

R
1

+
V

R
2

+
V

R
3

®
1

R
parallel

=
1

R
1

+
1

R
2

+
1

R
3

R
parallel

=
1

1 R
1
+1 R

2
+1 R

3

  
I = I

1
+ I

2
+ I

3
=

Resistors in Series and in Parallel
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Too high current through a wire can heat it up and inflame  

(make wires short and thick; respect max current through).

235 V

Power strip (n-sockets): parallel connection: 
burns out switches off

V=235 V

Rk r

appliance wire

Electric Power at home

𝐼 =
𝑉

𝑅𝑘+𝑟𝑤𝑖𝑟𝑒
; 𝑃𝑘 = 𝐼2𝑅𝑘; 𝑃𝑤𝑖𝑟𝑒 = 𝐼2𝑟𝑤𝑖𝑟𝑒

𝜂 =
𝑃𝑘

𝑃𝑘 + 𝑃𝑤𝑖𝑟𝑒
=

𝑅𝑘

𝑅𝑘 + 𝑟𝑤𝑖𝑟𝑒

𝑅𝑘 ≫ 𝑟𝑤𝑖𝑟𝑒 (otherwise loss of energy in the wires = heating of the wires)

𝑅𝑛 =
𝑅𝑘

𝑛
𝐼 =

𝑉

𝑅𝑘/𝑛 + 𝑟𝑤𝑖𝑟𝑒
; 𝜂 =

𝑅𝑘

𝑅𝑘 + 𝑛𝑟𝑤𝑖𝑟𝑒
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Resistors in Series and in Parallel

  

V

R
parallel

=
V

R
1

+
V

R
2

+
V

R
3

®
1

R
parallel

=
1

R
1

+
1

R
2

+
1

R
3

R
parallel

=
1

1 R
1
+1 R

2
+1 R

3

Example: Big circuit.
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Resistors in Series and in Parallel

Example: Big circuit.

  
V = IR

series
= IR

1
+ IR

2
+ IR

3
® R

series
= R

1
+ R

2
+ R

3
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Resistors in Series and in Parallel

  

V

R
parallel

=
V

R
1

+
V

R
2

+
V

R
3

®
1

R
parallel

=
1

R
1

+
1

R
2

+
1

R
3

R
parallel

=
1

1 R
1
+1 R

2
+1 R

3

Example: Big circuit.
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Resistors in Series and in Parallel

  
V = IR

series
= IR

1
+ IR

2
+ IR

3
® R

series
= R

1
+ R

2
+ R

3
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Resistors in Series and in Parallel

Rtot=10.3 

𝐼 =
ℰ

𝑅𝑡𝑜𝑡
= 0.873 A

Example: Big circuit.
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Two different 220-V light bulbs are connected to 220 V power 

supply as shown. Which bulb is brighter? Ignore change of 

filament resistance with current (and temperature). 

220 V

• Brightness is proportional to resistance

V  

Rx

x=60, 100

Lamp Brightness 1

𝑃1𝑥 = 𝑉2

𝑅𝑥
𝑅𝑥 = 𝑉2

𝑃1𝑥
𝑅100 𝑊 < 𝑅60 𝑊

𝑃2𝑥 = 𝐼2𝑅𝑥 𝐼 = const 𝑃100 𝑊 < 𝑃60 𝑊
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Lamp Brightness 2

220 V

What is the brightest light bulb in the circuit?  

P =
V 2

R

R100 < R60

The same voltage is 

applied to both, therefore 

the power of each bulb is 

nominal
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Three resistors are connected in parallel as shown in Figure 

28.11a. A potential difference of 18.0 V is maintained between 

points a and b. 

(A) Calculate the equivalent resistance of the circuit.

Because the three resistors are connected in parallel, we can use 

the rule for resistors in parallel, to evaluate the equivalent 

resistance.

(B) Find the current in each resistor

The potential difference across 

each resistor is 18.0 V. Apply the 

relationship ΔV = IR to find the 

currents:

(C) Calculate the power delivered to each resistor and the total 

power delivered to the combination of resistors

Summing the three quantities gives a total power of 198 W

Example
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Kirchhoff’s Rules
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Kirchhoff’s Rules

A junction, also called a 

node or branch point, is 

a point where three or 

more conductors meet. 

 

 

 

A loop is any closed 

conducting path. 

Kirchhoff’s Rules 

A junction, also called a 

node or branch point, is 

a point where three or 

more conductors meet. 

 

 

 

A loop is any closed 

conducting path. 

Kirchhoff’s Rules 

A junction, also called a 

node or branch point, is 

a point where three or 

more conductors meet. 

 

 

 

A loop is any closed 

conducting path. 

Kirchhoff’s Rules 

A junction, also called a 

node or branch point, is 

a point where three or 

more conductors meet. 

 

 

 

A loop is any closed 

conducting path. 

Kirchhoff’s Rules 
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Kirchhoff’s Rules

Junction rule (alternative and equivalent 

statement): The sum of currents entering a 

junction equals the sum of currents leaving it. 

Kirchhoff’s Rules 

  
I

1
+ I

2
= I

3
I

inå = I
outå

Junction rule: The sum of the currents entering a junction is 

equal to the sum of leaving currents. 

෍ 𝐼𝑖𝑛 = ෍ 𝐼𝑜𝑢𝑡𝐼1 + 𝐼2 = 𝐼3

Kirchhoff’s first rule is a statement of conservation of electric 

charge. All charges that enter a given point in a circuit must leave 

that point because charge cannot build up or disappear at a point.
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Kirchhoff’s Rules

Loop rule: The algebraic sum of the 

emfs (batteries) in a loop

 is equal 

to the sum of potentials drops on all 

other (inactive) elements in the loop. 

Vac=Vab+Vbc=Vae+Ved+Vdc

Kirchhoff’s second rule follows from the law of conservation of 

energy for an isolated system. Let’s imagine moving a charge 

around a closed loop of a circuit. When the charge returns to the 

starting point, the charge–circuit system must have the same 

total energy as it had before the charge was moved.

෍

𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠

𝜀𝑘 = ෍

𝑅,𝐶,𝐿

𝑉𝑖𝑗
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Kirchhoff’s Rules

• Choose the loops and the directions of currents.

• A 𝚫𝑽 = 𝒆𝒎𝒇 term is considered to be positive if we go in the 

direction − to +, otherwise it is negative.

• A 𝚫𝑽 = 𝑰𝑹 term is positive if we cross R in the same sense as 

the current that is going through it, otherwise it is negative.

–

+
–

+

+

-

෍

𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠

𝜀𝑘 = ෍

𝑅,𝐶,𝐿

𝑉𝑖𝑗In the formulation                                            :
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Kirchhoff’s Rules

For loop I we have

For loop II we have

Junction equation at a gives us

We now have three equations for the three 

unknown currents.

a

–

+

–

+

–

+

𝑰𝟏 𝑰𝟐

𝑰𝟑
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Circuits Containing Resistor and Capacitor (RC Circuits)

When the switch is closed, the capacitor will begin 

to charge. As it does, the voltage across it increases, 

and the current through the resistor decreases.

• Empty capacitor behaves like R=0

• Charged capacitor is like R=

• The 𝚫𝑽(𝒕) at the extremities of a 

capacitor is 𝑄(𝒕)/𝑪 

∞

How the charge, potential and

current depend on time ?
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Circuits Containing Resistor and Capacitor (RC Circuits)

Time-dependent equation:

Kirchhoff’ equation for the voltage around the loop:

• This equation is valid at any time t

Let’s solve it !

Recall:  I = 𝜕Q/𝜕t  

𝜀 =
𝜕𝑄(𝑡)

𝜕𝑡
𝑅+

𝑄(𝑡)
𝐶
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RC Circuits

Initial conditions:

 at 𝒕 = 𝟎 no charge (𝑸 = 𝟎 ) on C

We can easily find the initial current 𝑰𝒊 in the circuit

 and the maximum charge 𝑸𝒎𝒂𝒙 on the capacitor (for 𝒕 = ∞)

Q (t =0) = 0 I (t = ∞) = 0

𝜀 =
𝜕𝑄(𝑡)

𝜕𝑡
𝑅+

𝑄(𝑡)
𝐶

𝐼𝑖 =
𝜀

𝑅
(current at t=0) 𝑄𝑚𝑎𝑥 = 𝐶𝜀 (maximum charge)
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𝜀 = 𝜕𝑄
𝜕𝑡

𝑅+
𝑄
𝐶

RC Circuits

multiply by C and rearrange:

𝜕𝑄
𝜕𝑡

𝑅𝐶=𝜀𝐶−𝑄

differentiate:

𝑦 = 𝜀𝐶 − 𝑄 𝜕𝑦 = 𝜕 𝜀𝐶 − 𝑄 = − 𝜕𝑄

−
𝜕𝑦

𝜕𝑡
= 𝑦

𝑄

𝑅𝐶

𝜕𝑦

𝑦
= −

𝜕𝑡

𝑅𝐶

Integrate (separation of variable)

ln 𝑦 = −
𝑡

𝑅𝐶
+ 𝑐𝑜𝑛𝑠𝑡

Put to exp to both sides:

Replace y back:

𝑦 = 𝐴𝑒𝑥𝑝(−
𝑡

𝑅𝐶
)

𝜀𝐶 − 𝑄 = 𝐴𝑒𝑥𝑝(−
𝑡

𝑅𝐶
)

Initial conditions: 𝑓𝑜𝑟 𝑡 = 0
𝑄 = 0

𝐴 = 𝜀𝐶
𝑄 = 𝜀𝐶 [1 − exp

𝑡

𝑅𝐶
]
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The quantity RC that appears in the exponent 

is called the time constant of the circuit:

  t = RC.
• After this time Q=(1-1/e)= 63% of its final value

Q =eC·(1- exp(-
t

RC
))

Q = Qf ·(1- exp(-
t

RC
))

RC Circuits: CHARGE



6.41

Q =eC·(1- exp(-
t

RC
))

The voltage across the 

capacitor is  VC = Q/C:

• Voltage on capacitor 

follows the charge

RC Circuits: VOLTAGE

𝑉𝑐
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𝐼=
𝑑𝑄
𝑑𝑡

=
𝑑[𝜀𝐶(1−exp(𝑦))]

𝑑𝑦
∗

𝑑𝑦
𝑑𝑡

𝐼=
𝑑𝑄
𝑑𝑡

=−𝜀𝐶exp(𝑦)∗(−
1

𝑅𝐶
)

Differentiate the charge:

Q =eC·(1- exp(-
t

RC
))

I =
dQ

dt
=

1

-RC

dQ

d(-t / RC)

Current decays with 

time constant RC 
y = -

t

RC

RC Circuits: CURRENT
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RC Circuits: discharging

Circuit: charged capacitor in 

series with a resistor and an open 

switch (starting condition).

The capacitor will now act as a 

source of emf (but not constant in 

time, as for a battery).

The capacitor will discharge and 

its voltage and emf will decrease 

in time. Let’s solve it !



6.44

Kirchhoff's 2nd rule gives us

  

Q

C
= IR.

As the capacitor discharges

  
I = -

dQ

dt
.

Therefore,

  

Q

C
= -

dQ

dt
R ® Q = Q

0
e-t RC .

• 1/e of Q0 will be left at t =RC

RC Circuits: discharging
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Once again, the voltage and current as a 

function of time can be found from the 

charge:

  
V

C
=

Q

C
=

Q
0

C
e-t RC =V

0
e-t RC

  
I = -

dQ

dt
® I =

Q
0

RC
e-t RC = I

0
e-t RC .

• Q, VC and IC decay with time constant  = RC

• For a small R the discharge can be short but 

with high current !

and

Q = Q
0
e-t RC .

RC Circuits: discharging



6.46

Electrostatics and Microtechnology

Touchscreen

Piezoelectric “motors” for micro/nanometric positioning (with capacitive position sensors)

1-axis 2-axis 3-axis

Fingerprint sensor



5.475.47

Summary of electrostatics



V E

0




 =E

3

2

0

1 ( ) ( )
( )

4
V

d x




 −
=

−−


x x x
E x

x xx x
3

0

1 ( )
( )

4
V

V d x





=

−
x

x
x x

C

V d = − E l

2

0

V



 = −

V= −E


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

